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Abstract 
This paper describes the visualization of the study of signal entropy in two groups of sub-

jects. Brain activity signals were obtained using electroencephalogram (EEG). Two groups of 
adolescents – a schizophrenic group and a control group – were the subjects of the study. For 
each of the participants in both groups, 16 channels were recorded. Multi-scale entropy, mod-
el entropy, and approximated entropy were analyzed for signal complexity. The results of the 
entropic assessments were compared in the form of topographic images. Topographic images 
of the head surface were obtained based on a spherical spline. The activity of brain hemi-
spheres for both groups was compared using the mean values of the cross-correlation func-
tion. 

The study showed that the visualization of EEG signals could be a useful tool for classifi-
cation of patients with schizophrenia and control groups. The analysis may be considered 
useful for the psychiatric examination of patients with schizophrenia. 

On the other hand, the proposed approach is useful to extend the functionality of the ed-
ucative robotics. Identification of schizophrenic subjects in the group of students provided by 
the robotic complex on the fly helps to avoid possible antisocial behavior while applying ade-
quate training methods. 

  
Keywords: EEG, schizophrenia, entropy, cross-correlation, data visualization, educa-

tional robotics. 

 

1. Introduction 
Electroencephalogram (EEG) directionally measures the electrical activity of the brain over 
the surface of the scalp. Modern EEG systems use many electrodes (16-256) to determine the 
voltage at the corresponding points of the human scalp. Normally, EEG signal sources are not 
located directly below a particular writing electrode and detectable in a distant region or a 
deep brain structure at some distance from each of the electrodes. Reverse problem ap-
proaches often use numerical models to connect deep, distant sources with the signals 
recorded on the surface. 
This problem can be deemed topographic or the problem of determining the local function of 
the brain immediately below each writing electrode. The approaches to this problem do not 
focus on any potential or waveform, but instead, analyze the background EEG activity at each 
electrode to analyze the frequency spectrum and the characteristics of the oscillation func-
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tion. Instead of simulating a focal source distant from a specific electrode, this approach 
considers the source (s) below each electrode location [1]. 
The nature of the voltage measurement requires compliance with the conditions for placing 
electrodes on the scalp. These conditions include a sufficiently large voltage, sensitivity to 
brain activity, and the presence of noise [2]. Tentative solutions to this problem include 
averaging the electrode potential, analyzing bipolar pairs for which the reference effect is 
obvious, and evaluating the Laplace operator over the surface of the scalp using local or 
global splines. The averaged potential does not depend on the specific choice of the electrode 
and at each point approximates the potential relative to infinity. Thus, the approximation of 
intervening points between the electrodes allows obtaining reliable data on brain activity. 
One of the factors affecting the accuracy of topographic analysis results reflecting local brain 
function is the specific measure of EEG energy selected for mapping. Two most common 
energy indicators are absolute power or energy intensity at the electrode site in a certain 
frequency band, measured in mV; and relative power or a fraction of power in the electrode 
region in a given frequency bandwidth, measured as a percentage of the total absolute power 
across the spectrum. Previous studies have shown that absolute and relative power are 
complementary indicators that may transmit significantly different brain function data [3]. 
The captured EEG data on brain activity allow applying methods of nonlinear dynamics to 
signals, as well as in other branches of modern science, such as mechanics [4, 5], radiophysics 
[6], history [7], etc. 
Time-series entropy analysis is widely used in EEG studies. Multi-Scale Entropy (MSE) 
analysis was introduced in 2002 to assess the time series complexity by quantifying its 
entropy at various time scales. The algorithm is successfully used in various fields of research. 
After its introduction, a number of changes and refinements were proposed, some of which 
were aimed at improving the accuracy of entropy estimates, while others were aimed at 
studying alternative methods of analysis. Basic algorithms to determine the entropy are 
presented in the review [8]. 
According to literary references, much research is dedicated to the EEG of patients diagnosed 
with schizophrenia in accordance with various criteria. The most dangerous symptom of 
schizophrenia is probably a violation of the ambient information perception. Usually, the 
initial diagnosis of schizophrenia is based on observations of the patient’s actions, behavioral 
changes, familial mental history, a previous level of social functioning, etc. Normally, growth 
of nonspecific anomalies is reported. The work [9] states that EEG abnormalities and 
paroxysmal dysrhythmias may have a characteristic effect on the prediction of schizophrenia. 
Abrams and Taylor [10], using a classification system similar to DSM-IV, showed that 
patients with schizophrenia had twice as many temporal EEG abnormalities on the left side as 
patients with affective disorders. Classifying the cases of schizophrenia syndrome based on 
the analysis of EEG entropy is often a component of machine learning algorithms [11]. In 
[12], Shannon entropy, spectral entropy, approximated entropy, and the Lempel-Ziv index for 
the classification of schizophrenia patients were studied. The authors of this work used the 
visualization of entropy estimates to determine the most representative EEG channels, but 
they did not consider Multi-Scale entropy. In [13], visualization of spectral entropy was used 
to show differences in brain activity between schizophrenia patients and the control group. 
Interpretation of EEG recordings requires knowledge from four relevant sources of infor-
mation. Firstly, it takes recognizing and classifying EEG signals with individual identity and 
temporal patterns that occur when they reappear. Secondly, it is necessary to have a theoreti-
cal basis for the signal analysis to facilitate the understanding of both visual and automatic 
methods. The third requirement relates to the spatial or topographic features of the EEG. The 
fourth source of information is derived from empirical observations of the relationship 
between EEG and clinical conditions. Visual recognition of specific EEG samples is much 
simpler than their oral description because the eyes and brain are particularly good at 
recognizing images [14]. Mathematical methods of signal analysis allow for quantitative 
description of EEG recordings, because signal characteristics are measurable. Thus, visualiza-



tion of EEG signal entropy analysis combines all four sources of information about the 
subject of the study. The paper introduces an approach to visualize the signal entropy and 
interrelate the activity of brain zones, i.e. solve the topographic problem and coordinate EEG 
readings with clinical observations. 
In this study, the authors elaborated the examination of the ability of entropy estimates to 
characterize brain activity zoning in patients with schizophrenia based on topographic images 
of the head. Three parameters were used to clarify possible differences in the entropy 
estimation: Multi-Scale Entropy, Sample Entropy, and Approximate Entropy. We analyzed 
the transmission of information between different regions of the brain cortex both in patients 
with schizophrenia and in the control group by evaluating the cross-correlation function 
between the EEG electrodes. This entropy-based visual analysis is considered useful in the 
psychiatric examination of patients with schizophrenia. In addition, the proposed approach 
can serve as a tool for the early diagnosis of schizophrenia of students in an educational 
institution when using robotic systems as a robotic assistant for a teaching professional [24]. 

2. Entropy Types 

2.1. Approximated Entropy (ApEn) 
Pincus recommended an algorithm to determine the approximated entropy [15]. Approxi-
mated Entropy (ApEn) is a statistic measure to be used for quantitate measurement of signal 
complexity or non-regularity [16]. It shows the quantity of  fresh information in the signal. A 
reliable estimate of the approximated entropy can be obtained by analyzing short and noise-
contaminated signals. A positive number is assigned to time series with large values, which 
corresponds to greater complexity or irregularity of the data. Entropy is determined as: 
 

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = 𝜑𝑚(𝑟) − 𝜑𝑚+1(𝑟), 
where 𝑚 is data vector increment, 𝑟 is phase-space mesh size (error). 𝜑𝑚(𝑟) and 𝜑𝑚+1(𝑟) 
components are defined as: 

𝜑𝑚(𝑟) =
1

𝑁 − 𝑚 + 1
∑ 𝑙𝑛𝐶𝑟

𝑚(𝑖)

𝑁−𝑚+1

𝑖=1

, 

where 𝐶𝑟
𝑚(𝑖) is the number of 𝑚-long interval matches with the error of 𝑟 across the 𝑁 data 

interval. 

2.2. Sample Entropy (SampEn) 
Richman and Moorman developed Sample Entropy in order to eliminate disadvantages of the 
Approximated Entropy (ApEn) [17]. Approximated Entropy (ApEn) considers signal self-
similarity. Sample Entropy (SampEn) is the probability that 𝑚 data sequence coincides with 
another data sequence for the signal with the error of 𝑟, that stays the same if the data within 
the sequence are increased by 𝑚 + 1. Sample Entropy (SampEn) is determined from the 
following formula: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) = lim
𝑁→∞

− ln
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
, 

where 𝐴𝑚(𝑟) is the probability of two coinciding datasets for 𝑚 + 1 points with error of 𝑟; 
𝐵𝑚(𝑟) is the probability of coincidence of two datasets for 𝑚 points with error of 𝑟. 
Thus, Sample Entropy (SampEn) does not consider self-similarity, avoiding possible ln(0) 
problems, with logarithmation at the latest step. SampEn is less dependent on data format-
ting than ApEn. This makes SampEn algorithm useful for smaller data volume. 

2.3. Multi-Scale Entropy (MSE) 

A method to evaluate Multi-Scale Entropy (MSE) is suggested in the paper [18]. For the given 
discrete time series {𝑥1, … , 𝑥𝑖 , … , 𝑥𝑁}, the sequence is determined from the simplified time 

series {𝑦(𝜏)} regarding the scaling parameter 𝜏. Source time series is divided into 𝜏 long non-



overlapping windows. The values are averaged for each window afterward. Thus, each 
element of the simplified time series is determined as: 

𝑦𝑗
(𝜏)

=
1

𝜏
∑ 𝑥𝑖,   1 ≤ 𝑗 ≤ 𝑁/𝜏.

𝑗𝑟

𝑖=(𝑗−1)𝜏+1

 

For the first scale, the time series {𝑦(1)} is equivalent to the original time series. The length of 

each time series corresponds to the length of the original time series divided by the 𝜏 scale 
parameter. 
The 𝑆𝐸 quantitative measure of entropy for each simplified time series is evaluated as follows: 

𝑆𝐸(𝑚, 𝑟, 𝑁) = 𝑙𝑛
∑ 𝑛𝑖

′𝑚𝑁−𝑚
𝑖=1

∑ 𝑛𝑖
′𝑚+1𝑁−𝑚

𝑖=1

, 

where 𝑚 is data vector length increment, 𝑟 is phase-space mesh size (error), 𝑛𝑖
′𝑚 is the 

probability of recurrence of the data sequence having the given length within the input data. 

3. Spherical Spline 
The equations to determine the spherical entropy spline over the skull surface were obtained 
similarly to the spline of potential presented by Ferry [19]. 
We assume that the �̅�𝑗 is the vector to determine the position of the measuring electrode on 

the spherical scalp surface, at that, 𝑗 = 1, … , 𝐽. 𝑉(�̅�𝑗) function determines entropy at this point 

(regarding reference point). Spherical spline to estimate the entropy 𝑉(�̅�𝑗) is determined as 

follows: 

𝑉(�̅�𝑗) = 𝑐0 + ∑ 𝑐𝑗𝑔𝑚(𝜌 ∙ 𝜌𝑗),

𝐽

𝑗=1

 

where 𝑐0 and 𝑐𝑗 are data-relevant constants; 𝜌 ∙ 𝜌𝑗 operator is the cosine of the angle between 

the  �̅� interpolation point and  �̅�𝑗 electrode position. 𝑔𝑚 function is determined as follows: 

𝑔𝑚(𝑥) =
1

4𝜋
∑
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where 𝑃𝑛(𝑥) is Legendre's polynomial. 

4. Electrode Layout 
In order to realize the ‘10-20%’ layout system (Fig. 1) the head size is measured longitudinally 
from the nasal bridge (‘nasion’ point) to the inion (‘inion’ point) and transversely between 
two auricular tubes. These sizes are taken as 100% (separately for each direction). Afterward, 
nominal ‘meridians’ are drawn from the frontal to the occipital region and transverse 
‘parallels’ through the vertex as a percentage.  At the distance of 10% from the initial points 
(nasion and inion), the bottom line of electrodes is installed, other electrodes are installed in 
the points of intersection of ‘meridians’ and ‘parallels’  at the distance of  20%  from the full 
length longitudinally and transversely. Lead points are lettered according to the initial letters 
of the region names. Left hemisphere points have odd numbers. Midline electrodes are 
indexed with z (Fz, Cz, Pz) and called sagittal (S – sagittalis). Ear-clip electrodes are lettered 
with A (A – auriculus; A1, A2). [20] 



 
Fig 1. Electrode Installation ‘10-20%’ Layout System. 

5. Study Subjects 
The subjects of the study are adolescents at the age of 10 to 14 years. The first group consists 
of 45 schizophrenic boys at the age of 10 to 14 years, diagnosticated under the criteria listed in 
[21]. The subjects underwent no medication before the study, so the EEG results may be 
considered unaffected. The second group included 39 sane boys at the age of 11 to 13 years. 
EEG of the adolescents is recorded at rest, with eyes closed. 
To record EEG, we implemented the ‘10-20%’ layout system using 16 electrodes: O1, O2, P3, 
P4, Pz, T5, T6, C3, C4, Cz, T3, T4,F3, F4, F7, F8 at the electrode impedance below 10 kOhm, 
sampling rate of 128 Hz, and bandwidth of 0.5 to 45 Hz. Two experts eliminated head and eye 
motion artifacts manually. The measurement took 60 seconds. EEG source signal database is 
publicly available online: http://brain.bio.msu.ru/eeg_schizophrenia.htm 

6. Results 
Average entropy in channels for two subject groups is shown in Fig. 2. The following parame-
ter values are used in the calculation: 𝑚 = 5, 𝑟 = 0.2, 𝜏 = 4. The order of magnitude for the 
Approximated Entropy (ApEn) is 10−3, that is characteristic of long signals 𝑁 = 7680. The 
average entropy values for schizophrenic (sch) and control group (norm) subjects are too 
close to each other, precluding the subject classification. Sample Entropy (SampEn) shows 
more consistent results as a result of self-similarity consideration. By the way, multiple 
diagram intersections for schizophrenic (sch) and control group (norm) subjects occur. These 
intersections disallow using this method for subject classification. Multi-Scale Entropy has 
shown the best results, having intersections only for O1 channel. 
 

 
Fig. 2. Channeling of Approximated Entropy (ApEn), Sample Entropy (SampEn) and Multi-

Scale Entropy (MSE). 
 

We used the estimated average entropy values to plot diagrams (Fig. 3) visualizing brain 
activity determined in the following channels. For the Approximated Entropy (ApEn) (Fig. 2 
a) topographic images of schizophrenic subjects and control group are similar and unrepre-



sentative. For Sample Entropy (SampEn) (Fig. 2 b) and Multi-Scale Entropy (MSE) (Fig. 2 c), 
topographic images are asymmetric. For schizophrenic subjects, substantial lateralization of 
brain function is detected in the frontal region of the head. This correlates to other studies 
[22]. Authors of an MRI-based study also report observable deficiency of brain activity in the 
left hemisphere of schizophrenic subjects [23]. In our study, we determined hypoactivity in 
both left and right brain hemispheres, i.e. lowering of the complexity of EEG signals is 
observed in the entire brain, this representative sign was also mentioned in [12].  Visualiza-
tion was performed in MatLab software package. 

 
Fig. 3. Topographic Images of the Average Values a) Approximated Entropy (ApEn), b) 

Sample Entropy (SampEn) and c) Multi-Scale Entropy (MSE). 
 

Comparison of the images of EEG signal entropy obtained by Multi-Scale Entropy is indica-
tive of the apparent difference between cortical activity in the control group and the schizo-
phrenic subjects. We used the cross-correlation function to estimate this difference and 
determined the cross-correlation of the subject- and channel-averaged entropy. Fig. 4 shows 
the visualization of the cross-correlation function for both groups. Numbers (1-16) on the 
axes correspond to the following channels: O1, O2, P3, P4, Pz, T5, T6, C3, C4, Cz, T3, T4, F3, 
F4, F7, F8. 



 
Fig. 4. Cross-Channel Correlation a) In Control Group, b) In Schizophrenic Subjects. 

 
Analysis of the cross-correlation function allowed selection of electrodes with the highest 
values: 1-4(O1-P4), 4-9(P4-C4), 4-10(P4-Cz), 4-15(P4-F7), 4-16(P4-F8) for control group; 1-7 
(O1-T6), 1-12 (O1-T4), 2-10(O2-Cz), 2-12(O2-T4), 2-13(O2-F3), 3-13(P3-F3), 3-14(P3-F4), 5-
12(Pz-T4), 5-15(Pz-F7), 9-16(C4-F8) for schizophrenic subjects. Thus, lowering of the cross-
correlation entropy in the left hemisphere of the schizophrenic subjects regarding the right 
and in the left-front brain region regarding right-back one was detected. These results 
confirm a hypothesis that regional brain activity mismatch may cause schizophrenia. Fig. 4 
shows the channel areas with the biggest cross-correlation as A1-3 and B1-3 for control and 
schizophrenic groups, respectively. Regions are located similarly, but A1 and A2 dilate 
regarding B1 and B2. A1 region dilates because of the cross-correlation in the 5-8 (Pz-C3), 6-8 
(T5-C3), and 7-8 (T6-C3) channels, while A2 region dilates because of the cross-correlation in 
the 6-14 (T5-F4), 7-14 (T6-F4), and 8-14(C3-F4) channels. Location of the C3 and F4 
channels above the left and right brain hemispheres is indicative of the better regional 
intercommunication in the control group than in the schizophrenic subjects. The results of 
this study can be used in hardware-software complex of the anthropomorphous robotic 
assistant for a teaching professional (HSC ARATP) [24] to assess the student's current 
emotional, psychological and physical condition. 

7. Conclusion 
Authors proposed the visual analysis method combining the advantages of topographical and 
cross-correlation analysis. This approach allows determining the most representative method 
(among the studied ones) to evaluate signal complexity and interrelate the activity of the 
regions and brain regions. 
This study has shown that entropy visualization is useful to classify subjects of EEG examina-
tion. The most representative results to classify schizophrenic subjects and control group are 
obtained using Multi-Scale Entropy (MSE) method. Visualization of the average EEG channel 
entropy gives a metric for lateralization of brain function. 
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